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We analyze universal statistical properties of phase shifts and time delays for open chaotic systems in the
crossover regime of partly broken time-reversal invariance. In particular, we find that the distribution of the
time delay shows~%? behavior for weakly open systems of any symmefB1063-651X%97)51205-(

PACS numbef): 05.45:+b, 24.30-v

The energy-dependent scattering phase sHift€) de- vided by the random matrix approach. In particular, in the
fined via the eigenvalues ed, a=1,... M of the “Heidelberg variant” of this approaclil5] one relates the

M XM unitary scattering matri$(E) are important and fre- Scattering matrbdS(E) to the Hamiltonian of a closed coun-
quently used characteristics of the process of quantum sca€rpart of the open system. The latter Hamiltonian is consid-
tering. In particular, the derivatives of phase shifts over en€red to be a member of an ensemble of random matrices of

ergy 7,=3d0,/JE are related to the duration of a collision @ppropriate global symmetry—an idea commonly accepted
event. For example, the quantity,=M ~ 13,7, is the typi- in the domain of quantum chaos. The use of random matrices
cal time delay due to scattering, the so-called Wigner-Smittdives one the possibility to apply the very powerful machin-
time delay[1]. When some external parameters are takerf'y Of averaging developed by Efetp¥6] and to calculate
into consideratior(e.g., a magnetic fie)dthe corresponding different correlation functions explicitly for any number of
parametric variation of the phase shifts can as well be relate@P€n channels and arbitrary coupling to continua.
to some observabldg]. When employing the Heidelberg method the actual calcu-
Growing interest in the universal featurgj of quantum lation depends quite essentially on the symmetry of the un-
systems, whose classical counterparts demonstrate chaoflrlying Hamiltonian. The simplest case to study corre-
dynamics, attracted considerable attention to the process §Ponds to completely broken time-reversal invariafioRl)
quantum chaotic scattering, sb#] and[5] and references (Systems in a strong enpugh magnetic fieldhen the ran-
therein. From this point of view, different statistical charac-dom matrix HamiltoniarH is taken from the Gaussian uni-
teristics of phase shifts and time delays were addressed iary ensemble(GUE). For such systems, the statistics of
experiments on chaotic microwave reflecti@j, as well as  phase shifts, delay times, and resonance poles was thor-
in several numerical studies of various models of quantunpbughly investigated recently by two of (7], see a detailed
scattering in disordered and chaotic systéihs10]. exposition of the calculation ifiL8]. In the opposite case of

It is interesting to mention that for the case of only two fully preserved TRI wherfl is a member of the Gaussian

open channel$] =2 the phase shift8, , can simply be re-,yh504na1 ensemblgGOE) some aspects of time evolution
lated to the phases of transmission and reflection coeff|0|ent6,f a chaotic system were considered 20], the correlation

See, e.g.[ll]. The latter quantities are amenable to directy,qtion of Wigner-Smith time delays for two different en-
experimental measurements in quantum dots,[88gand o gias was found ifiL9], and the distribution of time delays

references therein. Another fact attributing additional interesf, -« optained for the perfect coupling casd 18], see also

to studies of time delay statistics is that it is intimately con- 21]. Let us also mention the papk2] addressing the issue

ngctgd with th? issue of mesoscopm;luctuabtlorc];s of dypﬂarﬂn f parametric correlations fd-matrix elements.
admittances of microstructures as shown by Gopar, Mello, |, the present Rapid Communication we extend the analy-

and Butiker [13]. istical ch - teh . sis of statistical properties of phase shifts and time delays to
One can extract statistical characteristics of wnatrix — he \whole crossover region of gradual breaking of the TRI.

exploiting a semiclassical periodic orbit expansion like thalyitrerent characteristics of chaotic and disordered systems in
provided by the Gutzwiller trace formula, see examples ofyiq ¢rossover regime were under quite an intensive theoret-
such calculations if4—6]. The resulting expressions prowde. ical investigation recently23—25.

an important insight into the problem. In particular, the semi-  \ysithin the framework of the random matrix theory

classical approximation for the time delay correlations at twy5mijtonians of theclosedchaotic systems under consider-
different energies was derived by Eckhafdd]. However, .00 are conveniently represented  ag23,25:

the results obtained in such a way have a restricted domai A - A ;
of applicability; in particular, they fail to describe the system ﬁ(y)A_HSJ” (y/VN)Ha, whereHs is NXN GOE matrix

with only a few open channel$ ~ 1. andH, is a real random antisymmetric matrix of the same

A powerful alternative to the semiclassical methods indimension. For the sake of generality the symmetric matrix
extracting theuniversal (i.e., generic and system indepen- Hg is taken in the forn{3]: As=H®+ (x/VN)AY) . This
den) statistical characteristics of the scattering matrix is proform allows one to simulate the influence of such perturba-
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tions (e.g., a variation of the strength of scattering potential with »(E)=7"1(1— E?/4)*2 being the density of states for
which do not break the TRI. All elements of random matri- the GOE matrices related to the local mean level spacing as
ces are independent and normalized in such a way that=(yN) . The quantityT, measures the part of the flux in
(Tr(AL.D)2)=N. channela that spends a substantial part of time in the inter-
In the limit N—c the crossover is driven by the param- action region[15]. We see that both limitsy,—0 and
etery e[0,»), with y=o corresponding to completely bro- y,— equally correspond to the weak effective coupling
ken TRI. Physically the parametgris proportional to the regimeT,<1, whereas the strongest couplifat fixed en-
magnetix flux through the systedh. One may also notice ergy E) corresponds to the valug,=1. The maximal pos-
that the typical shift of the levels due to the antisymmetricsible coupling corresponding to the upper bouRg=1 is
perturbation is5E, /A~y? [25], whereA is the mean level achieved in the present model for an energy interval in the
spacing. _ vicinity of the centerE=0. Below we restrict our attention
Within the framework of the Heidelberg approaftb] (g this point of spectrum in order to present our final results

the coupling of the chaotic region to the incoming and out-, the most compact form. Moreover, we consider all chan-
going waves is described with the help of thlex N matrix nels to be statistically equivalent,=y for a=1,... M.

W of amplitudesW,,, a=1,2,... M; i=1,... N, which  Generalization to arbitrar§ and nonequivalent channels can
couple the internal motion tM open channels. In what fol-  easily be done, sdd.8].
lows we consider the case of arbitrary, but fiXddwhereas In earlier works[17] and[18] it was shown that one can

N— 0. Without much loss of generality these amplitudes carstudy, very effectively, the statistics of phase shiftscon-
be chosen in a way ensuring that the aver&gmatrix is  sidered mod . To this end we find it to be convenient to
diagonal in the channel basisS,p) = San(Saa)- The strength introduce the auxiliary “phases’s related to the phase

of coupling to continua is convenient to be characterized viahifts ¢ as ¢=arctajy “tan(6/2)} and consider the density
the “sticking probabilities” (also called the “transmission PExy(¢):M_12a5(¢_¢a(ErX’y))-

coefficients”) T,=1-|(S,2)|%, which are given for the "~ The connected part of the correlation function of these
present model by the following expressifib]: densities is our main object of interest. It can be found per-
1 ol forming calculationsmutatis mutandissimilar to that pre-
- Ya™ Ya ted if17,18 and it turns out to be dependent only on the
T '=5|1+ L Yadap= T2 WiaWip, (1) 38N ’ P y
a2 2nu(E) | 2% 7TEi aWip. (1) differencep= ¢, — >

Kg,x_yl,yz(¢):<PE=0)<=O,y1(¢1)PE+Q,x,y2(¢2)>c
1 ® =d\, 20 02,2 2 2 2 . 2,2 2,.2.,2,,2 .2
=Re| d\| d\; =z Fu(d)e™ X2\~ AF Dgmioha =N +y1y2(\=Ag) = 12 (y1 +yp) A+ A=A = 1)
-1 1 1

X {(1—\?)coshe— (N2—\3)sinha+ R[ (y5+y3)((1—N?)coshu+ (A3— \?)sinha)

+2y1Y>(N 5+ N5+ \%=1)sinha]} )
|
where the “channel factor” is equal to hereg=2/T—1, with T being the transmission coefficient
5 . ) /2 introduced above.
Fo(d)=— K (1+iN tang) Secondly, one can extract explicitly the general distribu-
M 9¢%| 1+ 2N\ tanp—tarPp(N2+N2—1)| ' tion function of the scaled partial delay times

3  P(r)=(1MZ, 5(7s— Al27r74(y))) in the crossover regime

and where R,a, and o denote R=AZ+\5+\2 Cy (1 o

—2M\ho—1,  a=y¥,(1-\?), andw= 7Q/A. P(Ts):WJ dn J AN AM P (N3 1)L~ M)/4
The correlation function presented above is a very in- Ts -1 !

formative object. First of all, having it at our disposal, it

is a relatively easy task to shoywi8] that the correla-

tion function of Wigner-Smith time delays”
‘on function of - ignersmiih Ame A88Ya vy, \wherecy, =[(2m) ¥22M2+ 11 (M/2+1)]* and
=(rw(E=0x=0y7) "w(E+Q,X,y2))/{7w(E))” is given in

the crossover regime by the same expression(Byg.pro-

X e 02D 7, (8 ) TN, \), ©

vided one replaces the “channel factor’ EQ) by Ti(Np) = foﬁdlp v(p)M Ve~ (xﬁ/75>v(w>|(M_1)/2
(g+)\)2 M/2
Fa=(N1\a—N\)? , AaVA5—1
R TS VW LRI VA TPV w22
4 Ts
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TN ) =4y’[(1-\%)e P+ A\j(1-e #)]-(1-e #), 2 {7

where v () =g—Vg?—1cosy, B=2y%(1—\?), and1,(2) ; ThH
stands for the modified Bessel function. h>_

The distribution Eq(5) is valid for any number of open o T %\
channelsM and any value of transmission coefficiehand s N
as such is quite complicated. To get a better understanding of~ *x
its typical features it is reasonable to look separately at twog”
limiting cases of strongweak coupling to continua.

For the strong coupling regimé=1 (i.e.,,g=1) the ¢
integration in Eq(5) drops out, but the resulting expression )
is still quite cumbersome. However, one can easily find the 10 j
long time asymptotics to be of the following form: ?

2
100 4

U (2tM) >0 > - r . : . —t
m(y) e y (6) 0 -1 0 1 2 3 4
(27T)1/ZCMe—1/ZTsTS—(2+M/Z) y:O, InT

o 4

Plr>1)=

whereUy(y) is a rather complicated function of the sym-  FIG. 1. The distribution of the dwell timesin chaotic scatter-
metry breaking parameter. ing in weakly open Sinai-like billiari10]. Straight line corresponds

The second of this expressions holding for unbroken TRIo the theoretical predictiof( 7)o 7~ 2 with fitted proportionality
is actually exact for arbitrarys as can be seen performing coefficient. Deviations at smallarge = are due to crossovers to
the limit y—0 in the general Eq5) at T=1. This fact was other asymptotical regimesee text

first conjectured if21] and derived for the particular case L . .
M=1 by another method if3]. tems[18]. It also seems to be quite insensitive to the particu-

lar details of definitions of time delays and holds for distri-
tl:_)utions of such slightly different quantities as Wigner-Smith
time delay, partial delay times or even “dwell times.” Nu-
merical simulations of dwell times in chaotic scattering on a
two dimensional cavity in tunneling contact with two
waveguides have been performed i]. Sampling the dis-
tribution of dwell times from the energy-dependent fluctuat-
ing pattern obtained if10] we find a good agreement with
the predictedr—®? intermediate asymptotics, see Fig. 1.

. L Outside the parametrically large intengil 1< r,<g our
We suggest the following transparent physical |nterpretagenera| expression E¢5) predicts an exponential cutoff at
tion of the scalery : this is just the timéi/ SE, necessary by~ <g~! and a crossover to the behavior described by(Ex,.
the Heisenberg uncertainty relation to resolve a typical shifh.fr the asymptotically large times>g. One can check that
OEy due to the TRI-breaking perturbation. If the particle ¢, “weakly broken” TRI again there emerges a scale
dwellstinf thle ;(]:attering ?_or?_ailg f(;; attimedsg?rter thgnt q 7y(9)~g/y? such that the asymptotic tail is GOE-like at
cannot “feel” the magnetic field effects and the correspond-_"_7" _ i s ;

ing asymptotics is GOE-like. However, for large enoughg;gz;;yé?\),\;itﬁlﬁlghévgﬁs(;grl]z ;Igg\/];o.rrg 7(9), in ful
times, the particle resolvgs the effe(;t of the.broken TRI how- Finally, having in mind the comparison with the semiclas-
ever small is the magnetic field. This explains why the mos;e et s consider in more detail the large-channel limit
distant asymptotics of the time delay distribution is aIwaysM >1 of our general expressions like E@) describing the

GUE-like, provided the magnetic field is not identically zero. correlations of phase shifts and Wigner-Smith time delays.

Let us now 'E’urn our attention to the opposite limit of an e, doing this it is natural to consider the angle difference
almost “closed” chaotic systenit<1. Exploitingg>1 we b=~ b, to be of the order ofp~1/M<1. Then one

find for arbitrary number of open channels and arbitrary - . . .
) ; - . ° rescales¢p=¢/M, substitutes tai~ ¢/M in the “channel
the following universalup to a coefficientbehavior of de factor” Eq. (3) and performs the limiM— e explicitly. For

lay time distribution: =0 the resulting expression turns out toidenticalto the
P(r)xg Y27;%2  when g l<r.<g ) parametri(_: correlation function of eigenvalu_es of large ran-
dom matrices in the crossover regime derived for the first
in the parametrically large region of delay times. The pro-time by N. Taniguchiet al. [25]. Taking into account that
portionality coefficient in this formula depends on the pa-$1— ¢>~1/M results also ing,— 6,~1/M, we conclude
rametersy andM in a complicated way. that the statistics of scattering phase shifts in the ldvge
Such a7 %? behavior, holding irrespective of the TRI limit is just the same as that of energy levelsctdsedcha-
symmetry, is the most robust feature of the time delay staotic systems. The latter conclusion is in agreement with the
tistics of weakly open chaotic systems. It was first obtainedivailable numerical results obtained for a realistic model of
in [18] for the case of broken TRI, but physical argumentschaotic systems witM =23 in[9]. It is also interesting, that
show that it is a very general feature simply following from the only modification required forw#0 is to replace
the picture of well-isolated resonances typical for such sys¢— ¢+ w.

Equation (6) demonstrates that the limity—0 and
T—o0 do not commute. To understand this phenomenon be
ter it is instructive to consider the case of “weakly broken”
TRI, y<1, in more detail. A close inspection shows that for
such regime there emerges one more relevant time sgale
«y~2>1, such that for the domaindrs<r, the distribu-
tion function P(7s) shows the GOE-like behaviofP(7s)
o7y M2+2) “whereas atg> i this behavior changes to the
GUE-like: P(rg)oc 7y /27y (M*2)
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Considering the time delay characteristics one should takbetween the time delay and the low-frequency admittance
into account that the width of the time delay distribution is of G'(w) presented irf13] (see, however26]) one finds that
lower order inM as compared with the mean val¢e,) the parametric correlatofG'(0y,)G'(x,y,))/(G"Y2>—1 of
when resonances are overlappiddT>1 [19]. To extract the admittance in the limiM>1 is given by
the time delay correlations in the corresponding limit re-

quires a calculation similar to that done in the paper by Plu- 2 -2
. . . 1/1 1 Me
haret al.[25]. The resulting expression turns out to be quite SNt = 1+ =—{(rw)| . 9
a transparent one and is given by 2\r< 14 CeA
1 T'2—w? I?-w?

g =2 = +— (8) where C, denotes the so called “geometric capacitance”
ex¥1¥a 2\[I2 +w?]?  [T4+w?]? [13] and e stands for the electron charge. In the limiting
) B ) ) . cases of unbrokenyg=y,=0) and completely broken

provided thafl’ . =MT/2+x"+ (y; £ y,)*>1. Actually, this (y —y. ) TRI this expression coincides with that found

formula is nothing else but the semiclassical expression fOFecentIy by another method by Brouwer andtiiker [13].
the time delay correlator. It can be obtained from the

Gutzwiller trace formula in diagonal approximation, with the  We are very grateful to V.V. Sokolov for instructive dis-
guantity MT/2 being replaced by the decay rate out of thecussions and to Professor Hong Guo for kindly providing us
chaotic region, sefl4,18. with the numerical data used to extract the time delay distri-

The last point to be mentioned is related to the issue obution depicted in Fig. 1. Financial support from SFB 237
fluctuations of low-frequency admittance as definedli). der Deutschen Forschungsgemeinschaft, as well as from the
We noted above that the time delay fluctuates weakly in thgrogram “Quantum Chaos'(Grant No. INTAS-94-205Bis
many-channel limitM — oo, Using this fact and the relation acknowledged with thanks.
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