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Parametric correlations of phase shifts and statistics of time delays in quantum chaotic
scattering: Crossover between unitary and orthogonal symmetries
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We analyze universal statistical properties of phase shifts and time delays for open chaotic systems in the
crossover regime of partly broken time-reversal invariance. In particular, we find that the distribution of the
time delay showst23/2 behavior for weakly open systems of any symmetry.@S1063-651X~97!51205-0#

PACS number~s!: 05.45.1b, 24.30.2v
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The energy-dependent scattering phase shiftsua(E) de-
fined via the eigenvalues expiua , a51, . . . ,M of the

M3M unitary scattering matrixŜ(E) are important and fre-
quently used characteristics of the process of quantum s
tering. In particular, the derivatives of phase shifts over
ergy ta5]ua /]E are related to the duration of a collisio
event. For example, the quantitytW5M21(ata is the typi-
cal time delay due to scattering, the so-called Wigner-Sm
time delay @1#. When some external parameters are tak
into consideration~e.g., a magnetic field! the corresponding
parametric variation of the phase shifts can as well be rela
to some observables@2#.

Growing interest in the universal features@3# of quantum
systems, whose classical counterparts demonstrate ch
dynamics, attracted considerable attention to the proces
quantum chaotic scattering, see@4# and @5# and references
therein. From this point of view, different statistical chara
teristics of phase shifts and time delays were addresse
experiments on chaotic microwave reflection@6#, as well as
in several numerical studies of various models of quant
scattering in disordered and chaotic systems@7–10#.

It is interesting to mention that for the case of only tw
open channelsM52 the phase shiftsu1,2 can simply be re-
lated to the phases of transmission and reflection coefficie
see, e.g.,@11#. The latter quantities are amenable to dire
experimental measurements in quantum dots, see@12# and
references therein. Another fact attributing additional inter
to studies of time delay statistics is that it is intimately co
nected with the issue of mesoscopic fluctuations of dyna
admittances of microstructures as shown by Gopar, Me
and Büttiker @13#.

One can extract statistical characteristics of theS matrix
exploiting a semiclassical periodic orbit expansion like th
provided by the Gutzwiller trace formula, see examples
such calculations in@4–6#. The resulting expressions provid
an important insight into the problem. In particular, the sem
classical approximation for the time delay correlations at t
different energies was derived by Eckhardt@14#. However,
the results obtained in such a way have a restricted dom
of applicability; in particular, they fail to describe the syste
with only a few open channels:M;1.

A powerful alternative to the semiclassical methods
extracting theuniversal ~i.e., generic and system indepe
dent! statistical characteristics of the scattering matrix is p
551063-651X/97/55~5!/4857~4!/$10.00
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vided by the random matrix approach. In particular, in t
‘‘Heidelberg variant’’ of this approach@15# one relates the
scattering matrixS(E) to the Hamiltonian of a closed coun
terpart of the open system. The latter Hamiltonian is cons
ered to be a member of an ensemble of random matrice
appropriate global symmetry—an idea commonly accep
in the domain of quantum chaos. The use of random matr
gives one the possibility to apply the very powerful mach
ery of averaging developed by Efetov@16# and to calculate
different correlation functions explicitly for any number o
open channels and arbitrary coupling to continua.

When employing the Heidelberg method the actual cal
lation depends quite essentially on the symmetry of the
derlying Hamiltonian. The simplest case to study cor
sponds to completely broken time-reversal invariance~TRI!
~systems in a strong enough magnetic field!, when the ran-

dom matrix HamiltonianĤ is taken from the Gaussian un
tary ensemble~GUE!. For such systems, the statistics
phase shifts, delay times, and resonance poles was
oughly investigated recently by two of us@17#, see a detailed
exposition of the calculation in@18#. In the opposite case o

fully preserved TRI whenĤ is a member of the Gaussia
orthogonal ensemble~GOE! some aspects of time evolutio
of a chaotic system were considered in@20#, the correlation
function of Wigner-Smith time delays for two different en
ergies was found in@19#, and the distribution of time delay
was obtained for the perfect coupling case in@13#, see also
@21#. Let us also mention the paper@22# addressing the issu
of parametric correlations forS-matrix elements.

In the present Rapid Communication we extend the an
sis of statistical properties of phase shifts and time delay
the whole crossover region of gradual breaking of the T
Different characteristics of chaotic and disordered system
this crossover regime were under quite an intensive theo
ical investigation recently@23–25#.

Within the framework of the random matrix theory
Hamiltonians of theclosedchaotic systems under conside
ation are conveniently represented as@23,25#:
Ĥ(y)5ĤS1 i (y/AN)ĤA , where ĤS is N3N GOE matrix
and ĤA is a real random antisymmetric matrix of the sam
dimension. For the sake of generality the symmetric ma
ĤS is taken in the form@3#: ĤS5ĤS

(0)1(x/AN)ĤS
(1) . This

form allows one to simulate the influence of such pertur
R4857 © 1997 The American Physical Society
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tions ~e.g., a variation of the strength of scattering potent!
which do not break the TRI. All elements of random mat
ces are independent and normalized in such a way

^ Tr(ĤS,A
(0,1))2&5N.

In the limit N→` the crossover is driven by the param
eteryP@0,̀ ), with y5` corresponding to completely bro
ken TRI. Physically the parametery is proportional to the
magnetix flux through the systemF. One may also notice
that the typical shift of the levels due to the antisymmet
perturbation isdEy /D;y2 @25#, whereD is the mean level
spacing.

Within the framework of the Heidelberg approach@15#
the coupling of the chaotic region to the incoming and o
going waves is described with the help of theM3N matrix
Ŵ of amplitudesWia , a51,2, . . . ,M ; i51, . . . ,N, which
couple the internal motion toM open channels. In what fol
lows we consider the case of arbitrary, but fixedM whereas
N→`. Without much loss of generality these amplitudes c
be chosen in a way ensuring that the averageS matrix is
diagonal in the channel basis:^Sab&5dab^Saa&. The strength
of coupling to continua is convenient to be characterized
the ‘‘sticking probabilities’’ ~also called the ‘‘transmission
coefficients’’! Ta512u^Saa&u2, which are given for the
present model by the following expression@15#:

Ta
215

1

2 F11
ga1ga

21

2pn~E!
G ; gadab5p(

i
WiaWib , ~1!
in
it
l

at

-

n

a

with n(E)5p21(12E2/4)1/2 being the density of states fo
the GOE matrices related to the local mean level spacing
D5(nN)21. The quantityTa measures the part of the flux i
channela that spends a substantial part of time in the int
action region @15#. We see that both limitsga→0 and
ga→` equally correspond to the weak effective coupli
regimeTa!1, whereas the strongest coupling~at fixed en-
ergyE) corresponds to the valuega51. The maximal pos-
sible coupling corresponding to the upper boundTa51 is
achieved in the present model for an energy interval in
vicinity of the centerE50. Below we restrict our attention
to this point of spectrum in order to present our final resu
in the most compact form. Moreover, we consider all cha
nels to be statistically equivalent:ga5g for a51, . . . ,M .
Generalization to arbitraryE and nonequivalent channels ca
easily be done, see@18#.

In earlier works@17# and @18# it was shown that one can
study, very effectively, the statistics of phase shiftsua con-
sidered mod 2p. To this end we find it to be convenient t
introduce the auxiliary ‘‘phases’’f related to the phase
shifts u asf5arctan$g21tan(u/2)% and consider the densit
rE,x,y(f)5M21(ad„f2fa(E,x,y)….

The connected part of the correlation function of the
densities is our main object of interest. It can be found p
forming calculationsmutatis mutandis, similar to that pre-
sented in@17,18# and it turns out to be dependent only on t
differencef5f12f2
Kv,x,y1 ,y2
f ~f!5^rE50,x50,y1

~f1!rE1V,x,y2
~f2!&c

5 ReE
21

1

dlE
1

`

dl1E
1

`dl2

R2FM~f!e2 x2/2 ~2l1
2l2

2
2l1

2
2l2

2
2l211!e2 iv~l1l22l!1y1y2~l1

2
2l2

2
!2 1/2 ~y1

2
1y2

2
!~l1

2
1l2

2
2l221!

3$~12l2!cosha2~l1
22l2

2!sinha1R@~y1
21y2

2!„~12l2!cosha1~l2
22l1

2!sinha…

12y1y2~l1
21l2

21l221!sinha#% ~2!
t

u-
s

where the ‘‘channel factor’’ is equal to

FM~f!52
]2

]f2 F ~11 il tanf!2

112il1l2tanf2tan2f~l1
21l2

221!G
M /2

,

~3!

and where R,a, and v denote R5l1
21l2

21l2

22ll1l221, a5y1y2(12l2), andv5pV/D.
The correlation function presented above is a very

formative object. First of all, having it at our disposal,
is a relatively easy task to show@18# that the correla-
tion function of Wigner-Smith time delaysKv,x,y1 ,y2

t

5^tW(E50,x50,y1)tW(E1V,x,y2)&/^tW(E)&
2 is given in

the crossover regime by the same expression Eq.~2!, pro-
vided one replaces the ‘‘channel factor’’ Eq.~3! by

FMt 5~l1l22l!2F ~g1l!2

~g1l1l2!
22~l1

221!~l2
221!G

M /2

,

~4!
-

hereg52/T21, with T being the transmission coefficien
introduced above.

Secondly, one can extract explicitly the general distrib
tion function of the scaled partial delay time
P(ts)5^1/M(ad„ts2D/2pta(y)…& in the crossover regime

P~ts!5
CM

ts
~M15!/2E

21

1

dl E
1

`

dl2l2
~M13/2!~l2

221!~12M !/4

3e22y2~l2
2
21!J1~l2!J2~l,l2!, ~5!

whereCM5@(2p)1/22M /211G(M /211)#21 and

J1~l2!5E
0

p

dc v~c!M11/2e2 ~l2
2/ts!v~c!I ~M21!/2

3Fl2Al2
221

ts
v~c!G ,
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J2~l,l2!54y2@~12l2!e2b1l2
2~12e2b!#2~12e2b!,

where v(c)5g2Ag221cosc, b52y2(12l2), and I p(z)
stands for the modified Bessel function.

The distribution Eq.~5! is valid for any number of open
channelsM and any value of transmission coefficientT and
as such is quite complicated. To get a better understandin
its typical features it is reasonable to look separately at
limiting cases of strong~weak! coupling to continua.

For the strong coupling regimeT51 ~i.e., g51) the c
integration in Eq.~5! drops out, but the resulting expressio
is still quite cumbersome. However, one can easily find
long time asymptotics to be of the following form:

P~ts@1!5HUM~y!ts
2~21M ! y.0

~2p!1/2CMe
21/2tsts

2~21M /2! y50,
~6!

whereUM(y) is a rather complicated function of the sym
metry breaking parametery.

The second of this expressions holding for unbroken T
is actually exact for arbitraryts as can be seen performin
the limit y→0 in the general Eq.~5! at T51. This fact was
first conjectured in@21# and derived for the particular cas
M51 by another method in@13#.

Equation ~6! demonstrates that the limitsy→0 and
t→` do not commute. To understand this phenomenon
ter it is instructive to consider the case of ‘‘weakly broken
TRI, y!1, in more detail. A close inspection shows that f
such regime there emerges one more relevant time scaty
}y22@1, such that for the domain 1!ts!ty the distribu-
tion function P(ts) shows the GOE-like behavior:P(ts)
}ts

2(M /212) , whereas atts@ty this behavior changes to th
GUE-like: P(ts)}ty

M /2ts
2(M12) .

We suggest the following transparent physical interpre
tion of the scalety : this is just the time\/dEy necessary by
the Heisenberg uncertainty relation to resolve a typical s
dEy due to the TRI-breaking perturbation. If the partic
dwells in the scattering domain for a time shorter thanty it
cannot ‘‘feel’’ the magnetic field effects and the correspon
ing asymptotics is GOE-like. However, for large enou
times, the particle resolves the effect of the broken TRI ho
ever small is the magnetic field. This explains why the m
distant asymptotics of the time delay distribution is alwa
GUE-like, provided the magnetic field is not identically zer

Let us now turn our attention to the opposite limit of a
almost ‘‘closed’’ chaotic system:T!1. Exploitingg@1 we
find for arbitrary number of open channels and arbitraryy
the following universal~up to a coefficient! behavior of de-
lay time distribution:

P~ts!}g
21/2ts

23/2 when g21!ts!g ~7!

in the parametrically large region of delay times. The p
portionality coefficient in this formula depends on the p
rametersy andM in a complicated way.

Such at23/2 behavior, holding irrespective of the TR
symmetry, is the most robust feature of the time delay s
tistics of weakly open chaotic systems. It was first obtain
in @18# for the case of broken TRI, but physical argumen
show that it is a very general feature simply following fro
the picture of well-isolated resonances typical for such s
of
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tems@18#. It also seems to be quite insensitive to the partic
lar details of definitions of time delays and holds for dist
butions of such slightly different quantities as Wigner-Sm
time delay, partial delay times or even ‘‘dwell times.’’ Nu
merical simulations of dwell times in chaotic scattering on
two dimensional cavity in tunneling contact with tw
waveguides have been performed in@10#. Sampling the dis-
tribution of dwell times from the energy-dependent fluctu
ing pattern obtained in@10# we find a good agreement wit
the predictedt23/2 intermediate asymptotics, see Fig. 1.

Outside the parametrically large intervalg21!ts!g our
general expression Eq.~5! predicts an exponential cutoff a
ts&g21 and a crossover to the behavior described by Eq.~6!
for the asymptotically large timest@g. One can check tha
for ‘‘weakly broken’’ TRI again there emerges a sca
ty(g);g/y2, such that the asymptotic tail is GOE-like a
g!ts!ty(g), but always GUE-like forts@ty(g), in full
agreement with the discussion above.

Finally, having in mind the comparison with the semicla
sics let us consider in more detail the large-channel li
M@1 of our general expressions like Eq.~2! describing the
correlations of phase shifts and Wigner-Smith time dela
When doing this it is natural to consider the angle differen
f5f12f2 to be of the order off;1/M!1. Then one
rescalesf[f̃/M , substitutes tanf;f̃/M in the ‘‘channel
factor’’ Eq. ~3! and performs the limitM→` explicitly. For
v50 the resulting expression turns out to beidentical to the
parametric correlation function of eigenvalues of large ra
dom matrices in the crossover regime derived for the fi
time by N. Taniguchiet al. @25#. Taking into account that
f12f2;1/M results also inu12u2;1/M , we conclude
that the statistics of scattering phase shifts in the largeM
limit is just the same as that of energy levels ofclosedcha-
otic systems. The latter conclusion is in agreement with
available numerical results obtained for a realistic model
chaotic systems withM523 in @9#. It is also interesting, tha
the only modification required forvÞ0 is to replace
f̃→f̃1v.

FIG. 1. The distribution of the dwell timest in chaotic scatter-
ing in weakly open Sinai-like billiard@10#. Straight line corresponds
to the theoretical predictionP(t)}t23/2 with fitted proportionality
coefficient. Deviations at small~large! t are due to crossovers t
other asymptotical regimes~see text!.
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Considering the time delay characteristics one should t
into account that the width of the time delay distribution is
lower order inM as compared with the mean value^tW&
when resonances are overlapping:MT@1 @19#. To extract
the time delay correlations in the corresponding limit
quires a calculation similar to that done in the paper by P
haret al. @25#. The resulting expression turns out to be qu
a transparent one and is given by

Kv,x,y1 ,y2
t 5

1

2 S G2
2 2v2

@G2
2 1v2#2

1
G1
2 2v2

@G1
2 1v2#2

D ~8!

provided thatG6[MT/21x21(y16y2)
2@1. Actually, this

formula is nothing else but the semiclassical expression
the time delay correlator. It can be obtained from t
Gutzwiller trace formula in diagonal approximation, with th
quantityMT/2 being replaced by the decay rate out of t
chaotic region, see@14,18#.

The last point to be mentioned is related to the issue
fluctuations of low-frequency admittance as defined in@13#.
We noted above that the time delay fluctuates weakly in
many-channel limitM→`. Using this fact and the relation
-
si

.

i

o

e
f

-
-

r

f

e

between the time delay and the low-frequency admitta
GI(v) presented in@13# ~see, however,@26#! one finds that
the parametric correlator̂GI(0,y1)G

I(x,y2)&/^G
I&221 of

the admittance in the limitM@1 is given by

1

2 S 1

G2
2 1

1

G1
2 D S 11

Me2

CeD
^tW& D 22

, ~9!

where Ce denotes the so called ‘‘geometric capacitanc
@13# and e stands for the electron charge. In the limitin
cases of unbroken (y15y250) and completely broken
(y15y2→`) TRI this expression coincides with that foun
recently by another method by Brouwer and Bu¨ttiker @13#.
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cussions and to Professor Hong Guo for kindly providing
with the numerical data used to extract the time delay dis
bution depicted in Fig. 1. Financial support from SFB 2
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